An inequality for nonnegative entire functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative deautoconvolution algorithm for nonnegative functions

Abstract. This paper considers the inverse problem of recovering a nonnegative function from its autoconvolution. We propose an algorithm that solves the problem by minimizing Csiszár’s I-divergence between the observed autoconvolution and an estimated autoconvolution. We call it a deautoconvolution algorithm. Various properties of the algorithm are discussed and proven. The effectiveness of th...

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

An Inequality for Macaulay Functions

Given integers k ≥ 1 and n ≥ 0, there is a unique way of writing n as n =

متن کامل

An inequality for polymatroid functions

An integral-valued set function f : 2V 7→ Z is called polymatroid if it is submodular, non-decreasing, and f(∅) = 0. Given a polymatroid function f and an integer threshold t ≥ 1, let α = α(f, t) denote the number of maximal sets X ⊆ V satisfying f(X) < t, let β = β(f, t) be the number of minimal sets X ⊆ V for which f(X) ≥ t, and let n = |V |. We show that if β ≥ 2 then α ≤ β(log t)/c, where c...

متن کامل

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0137837-9